A Proposed Technique For Recognizing And Analyzing Body Language Using Slantlet Transform And Deep Learning
Ban Amjed Saeed
Technical College of Management, Middle Technical University Baghdad, Iraq
Ali Mohammed Sahan
Technical College of Management, Middle Technical University Baghdad, IraqTechnical College of Management, Middle Technical University Baghdad, Iraq
Download PDF http://doi.org/10.37648/ijps.v19i01.011
Abstract
Body language encompasses a variety of nonverbal cues, such as head movements, hand movements, body postures, or any other part of the body, from which intentions and feelings can be inferred. The expanding use of body language in various fields has made it necessary for recognition systems to achieve accuracy and efficiency in performance. This paper proposes a two-stage to body language recognition and analysis technique. The first stage is extracting frames from the video, after which the third level of Slantlet Transform is applied to reduce the dimensions of the frames while preserving the essential features and removing unnecessary features, thus reducing processing time. In the second stage, deep learning models are used to extract features and classify, followed by analyzing body language and human behavior in various legal contexts. This mechanism helps reduce processing time while maintaining high accuracy. The Slantlet Transform also makes the technique resistant to rotation and noise, as it removes unwanted features that typically contain noise. A variety of experiments were conducted to test the accuracy and efficiency of the proposed technique using the GEMEP dataset and The Real-Life Deception Detection dataset. The proposed technique achieved an accuracy of 99.56% and 98.22% in recognizing and analyzing body language, respectively, in addition to achieving a reduction in processing time of more than 75%.
Keywords:
Body Language; Body Language Recognition; Analyzing Body Language; Slantlet Transform; Deep Learning; GEMEP dataset; Real Life Deception Detection dataset
References
- Abdulghafor, R., Turaev, S., & Ali, M. A. H. (2022). Body language analysis in healthcare: An overview. Healthcare, 10(7), 1251. https://doi.org/10.3390/healthcare10071251
- Ahmad, Z., & Khan, N. (2022). A survey on physiological signal-based emotion recognition. Bioengineering, 9(11), 688. https://doi.org/10.3390/bioengineering9110688
- Al-Tamimi, M. S. H. (2019). Combining convolutional neural networks and slantlet transform for an effective image retrieval scheme. International Journal of Power Electronics and Drive Systems, 9(5), 4382-4395. https://doi.org/10.11591/ijece.v9i5.pp4382-4395
- Arif, S., Wang, J., Hassan, T. U., & Fei, Z. (2019). 3D-CNN-based fused feature maps with LSTM applied to action recognition. Future Internet, 11(2), 42. https://doi.org/10.3390/fi11020042
- Artanto, H., & Arifin, F. (2023). Emotions and gesture recognition using affective computing assessment with deep learning. IAES International Journal of Artificial Intelligence, 12(3), 1419-1427. https://doi.org/10.11591/ijai.v12.i3.pp1419-1427
- Banziger, T., & Scherer, K. R. (2010). Introducing the Geneva Multimodal Emotion Portrayal (GEMEP) corpus. In Blueprint for affective computing: A sourcebook (pp. 217-294). Oxford University Press
- Darduh, M. T., Sahan, A. M., & Al-Itbi, A. S. A. (2024). Rotation invariant technique for sign language recognition. InfoTechSpectrum: Iraqi Journal of Data Science, 1(1), 16-27. https://doi.org/10.51173/ijds.v1i1.6
- Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068
- Elboushaki, A., Hannane, R., Afdel, K., & Koutti, L. (2020). MultiD-CNN: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in RGB-D image sequences. Expert Systems with Applications, 139, 112829. https://doi.org/10.1016/j.eswa.2019.112829
- Goodrich, M. A., & Schultz, A. C. (2007). Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, 1(3), 203-275. https://doi.org/10.1561/1100000005
- Hanoon, A. (2009). Image zooming using inverse slantlet transform. Al-Khwarizmi Engineering Journal, 5(2), 54-65.
- Khalifa, I., Ejbali, R., Schettini, R., & Zaied, M. (2021). Deep multi-stage approach for emotional body gesture recognition in job interview. The Computer Journal, 65(7), 1702-1716. https://doi.org/10.1093/comjnl/bxab011
- Khazal, R. B., & Habeeb, N. J. (2022). Enhancement infrared-visible image fusion using the integration of stationary wavelet transform and fuzzy histogram equalization. Journal of Techniques, 4(4), 119-127. https://doi.org/10.51173/jt.v4i4.700
- Kleinsmith, A., & Bianchi-Berthouze, N. (2013). Affective body expression perception and recognition: A survey. IEEE Transactions on Affective Computing, 4(1), 15-33. https://doi.org/10.1109/T-AFFC.2012.16
- Kolivand, H., Wee, T. C., Asadianfam, S., Rahim, M. S., & Sulong, G. (2023). High imperceptibility and robustness watermarking scheme for brain MRI using slantlet transform coupled with enhanced knight tour algorithm. Multimedia Tools and Applications, 83(8), 22221-22260. https://doi.org/10.1007/s11042-023-16459- 7
- Leong, S. C., Tang, Y. M., Lai, C. H., & Lee, C. K. M. (2023). Facial expression and body gesture emotion recognition: A systematic review on the use of visual data in affective computing. Computer Science Review, 48, 100545. https://doi.org/10.1016/j.cosrev.2023.100545
- Mohammed, R. T., & Khoo, B. E. (2012). Image watermarking using slantlet transform. 2012 IEEE Symposium on Industrial Electronics and Applications, 281-286. https://doi.org/10.1109/ISIEA.2012.6496644
- Niewiadomski, R., Kolykhalova, K., Piana, S., Alborno, P., Volpe, G., & Camurri, A. (2019). Analysis of movement quality in full-body physical activities. ACM Transactions on Interactive Intelligent Systems, 9(1), 1- 20. https://doi.org/10.1145/3132369
- Noroozi, F., Corneanu, C. A., Kaminska, D., Sapinski, T., Escalera, S., & Anbarjafari, G. (2021). Survey on emotional body gesture recognition. IEEE Transactions on Affective Computing, 12(2), 505-523. https://doi.org/10.1109/TAFFC.2018.2874986
- Ojeda-Castelo, J. J., Capobianco-Uriarte, M. L. M., Piedra-Fernandez, J. A., & Ayala, R. (2022). A survey on intelligent gesture recognition techniques. IEEE Access, 10, 87135-87156. https://doi.org/10.1109/ACCESS.2022.3199358
- Perez-Rosas, V., Abouelenien, M., Mihalcea, R., & Burzo, M. (2015). Deception detection using real-life trial data. Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, 59-66.
- Rehman, M. U., et al. (2022). Dynamic hand gesture recognition using 3D-CNN and LSTM networks. Computers, Materials & Continua, 70(3), 4675-4690. https://doi.org/10.32604/cmc.2022.019586
- Santhoshkumar, R., & Geetha, M. K. (2019). Deep learning approach for emotion recognition from human body movements with feedforward deep convolution neural networks. Procedia Computer Science, 152, 158-165. https://doi.org/10.1016/j.procs.2019.05.038
- . Santos, C. C. D., Samatelo, J. L. A., & Vassallo, R. F. (2020). Dynamic gesture recognition by using CNNs and star RGB: A temporal information condensation. Neurocomputing, 400, 238-254. https://doi.org/10.1016/j.neucom.2020.03.038
- Sarma, D., Kavyasree, V., & Bhuyan, M. K. (2022). Two-stream fusion model using 3D-CNN and 2D-CNN via video-frames and optical flow motion templates for hand gesture recognition. Innovations in Systems and Software Engineering. https://doi.org/10.1007/s11334-022-00477-z
- Schneider, P., Memmesheimer, R., Kramer, I., & Paulus, D. (2019). Gesture recognition in RGB videos using human body keypoints and dynamic time warping. Lecture Notes in Computer Science, 11531, 281-293. https://doi.org/10.1007/978-3-030-35699-6_22
- Schneider, P., Memmesheimer, R., Kramer, I., & Paulus, D. (2019). Gesture recognition in RGB videos using human body keypoints and dynamic time warping. Lecture Notes in Computer Science, 11531, 281-293. https://doi.org/10.1007/978-3-030-35699-6_22
- Sekar, V., & Jawaharlalnehru, A. (2022). Semantic-based visual emotion recognition in videos-a transfer learning approach. International Journal of Electrical and Computer Engineering, 12(4), 3674-3683. https://doi.org/10.11591/ijece.v12i4.pp3674-3683
- Selesnick, I. W. (1998). The slantlet transform. Proceedings of the IEEE-SP International Symposium on TimeFrequency and Time-Scale Analysis, 53-56. https://doi.org/10.1109/TFSA.1998.721359
- Sen, U. M., Perez-Rosas, V., Yanikoglu, B., Abouelenien, M., Burzo, M., & Mihalcea, R. (2022). Multimodal deception detection using real-life trial data. IEEE Transactions on Affective Computing, 13(1), 306-319.
- Shafique, Z., Wang, H., & Tian, Y. (2023). Nonverbal communication cue recognition: A pathway to more accessible communication. 023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 5666-5674. https://doi.org/10.1109/CVPRW59228.2023.00600
- Singh, H., Kumar, A., Balyan, L. K., & Singh, G. K. (2018). Slantlet filter-bank based satellite image enhancement using gamma corrected knee transformation. International Journal of Electronics, 105(10), 1695- 1715. https://doi.org/10.1080/00207217.2018.1477199
- Tahghighi, P., Koochari, A., & Jalali, M. (2021). Deformable convolutional LSTM for human body emotion recognition. Lecture Notes in Computer Science, 12663, 741-747. https://doi.org/10.1007/978-3-030-68796-0_54
- Vaijayanthi, S., & Arunnehru, J. (2022). Human emotion recognition from body posture with machine learning techniques. Communications in Computer and Information Science, 1613, 231-242. https://doi.org/10.1007/978- 3-031-12638-3_20
- Yang, Z., Kay, A., Li, Y., Cross, W., & Luo, J. (2021). Pose-based body language recognition for emotion and psychiatric symptom interpretation. 2020 25th International Conference on Pattern Recognition, 294-301. https://doi.org/10.1109/ICPR48806.2021.9412591
- Zhao, X., Wang, L., Zhang, Y., et al. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57, 99. https://doi.org/10.1007/s10462-024-10721-6